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ON TRAVELING WAVES IN BEAMS!

By RoBErT W. LEONARD and BErNARD BUDIANBKY

SUMMARY

The basic equations of Timoshenko for the motion of mbrating
nonuniform beams, which allow for effects of transverse shear
deformation and rotary inertia, are presented in several forms,
tncluding one in which the equations are written in the directions
" of the characteristics. The propagation of discontinuities in
moment and shear, as governed by these equations, 18 discussed.

Numerical traveling-wave solutions are obtained for some
elementary problems of finite uniform beams for which the prop-
agat-on velocities of bending and shear discontinuities are
taken to be equal. These solutions are compared with modal
solutions of Timoshenko’s equations and, in some cases, with
exact closed solutions.

INTRODUCTION

The theoretical analysis of transient stresses in aircraft
wings and fuselages subjected to impact loadings has gen-
erally been performed by means of a mode-superposition
method that uses the natural modes of vibration predicted
by the elementary engineering theory of beam bending.
(See, for example, refs. 1 to 3.) TFor very sharp impact
loadings, however, this approach is known to have certain
shortcomings. For sharp impacts of short duration, many
modes are often required for a satisfactory degree of con-
vergence (see, for example, ref. 4); in addition, the use of
elementary beam theory in the calculation of the higher
modes of vibration is inaccurate because of the neglect of,
among other factors, the effects of transverse shear deforma-
tion and rotary inertia which become increasingly Jmporta.nt
for higher and higher modes (ref. 5).

A classically recognized alternative to the modal method
of calculating transient stresses in elastic bodies is the travel-
ing-wave approach, which seeks to trace directly the propa-
gation of stresses through the body (ref. 3). Although the
traveling-wave concept has been successfully used to treat
such simple problems as longitudinal and torsional impact
of rods, only recently have serious attempts been made to
gtudy the transiént bending response of beams by this
approach. Fligge (vef. 6) was apparently the first to point
out that elementary beam theory could not serve as an
adequate basis for the traveling-wave approach since the
elementary theory predicts that disturbances propagate with
infinite velocity; he showed, however, that a traveling-wave
theory could be constructed by modifying the elementary

‘example.

theory, as Timoshenko (ref. 7) did, to include first-order
offects of transverse shear deformation and rotary inertia.
On the basis of this more accurate theory, Fligge found that
discontinuities in moment and shear travel along the beam
with finite, and generally distinet, velocities. A similar
analysis was carried out independently by Robinson (ref. 8)
who, exploiting the hyperbolic nature of Timoshenko’s
equations, proposed the use of approximate methods of
solution and gave some numericel results for a particular
Pleiffer (ref. 9) also suggested the possibility of
step-by-step solutions by the method of characteristics. In
reference 10, Uflyand attempted an analytical solution of
Timoshenko’s equations for the case of a simply supported
beam subjected to a sudden application of load; however, as
was shown by Dengler and Goland (ref. 11), Uflyand’s work
is marred by the fact that he applied boundary conditions
that are incorrect for Timoshenko’s theory. The only
known example of an exact traveling-wave solution based on
Timoshenko’s theory was presented by Dengler and Goland
for the case of an infinitely long beam subjected to a con-
centrated impulse.

Thus, although the use of Timoshenko’s theory as a basis
for the transient-stress analysis of beams has been seriously
considered, few problems have actually been solved. Addi-
tional basic studies of Timoshenko’s equations and their
solution, particularly for finite-length beams, constitute
necessary prerequisites to the development of practical
methods of dynamic-stress analysis based on the traveling-
wave approach. In the present report, several- specific
problems of transient loading of uniform beams of finite
length are considered and their solutions by various proce-
dures, all based on the Timoshenko theory, are presented.
These procedures are (a) numerical step-by-step integration—

" the “method of characteristics,” (b) mode superposition, and

(c) exact closed-form solution. The examples are all for the
special case of equal propagation velocities of shear and
bending disturbances; only for this case have exact solutions
been found in closed form. For the sake of completeness,
the presentation of these solutions is preceded by an exposi-
tion of the basic equations of Timoshenko’s theory, a derzva-
tion of the characteristic lines and characteristic forms of
these equations, and a discussion of their implications con-
cerning propagation of disturbances.

1 Supersedes NACA TN 2874, “On Traveling Waves in Beams” by Robert W. Leonard and Bernard Budiansky, 1953,
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SYMBOLS

cross-sectional area

Young’s modulus of elasticity

shear modulus of elasticity

cross-sectional moment of inertia

length of finite beam (arbitrary length for infinite
beam)

internal bending moment (see fig. 1)

dimensionless internal bending moment, ML/EIy
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vertical shear force on a cross section (see fig. 1)
dimensionless vertical shear force, VIA/EIy
propagation velocity of bending discontinuities,
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propagation velocity of shear discontinuities,
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pd,

operator used in the Laplace transformation

intensity of distributed external loading

dimensionless intensity of external loading, ¢Z3/EIy

cross-sectional radius of gyration

time '

velocity of deflection, ¥,

dimensionless velocity of deflection, v/c,

coordinate along beam

deflection (see fig. 1)

dimensionless deflection, y/L

denotes a discontinuity in quantity immediately
following
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dimensionless coordinate along beam, 2/L
density of beam material
dimensionless time, ¢)f/L -
rotation of cross section about neutral axis (see
fig. 1)
velocity of rotation of cross section, ¥,
dimensionless velocity of rotation, wL/e,
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ubscripts:

contributing to resistance of beam to bending

contributing to inertia

contributing to resistance of beam to shearing

indicate partial derivatives with respect to those
quantities
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BASIC EQUATIONS
NONUNIFORM BEAMS

Timoshenko’s equations.—The Timoshenko theory of
beam bending (ref. 7) constitutes a modification of elemen-
tary beam theory that attempts to account for the effects
of transverse shear deformation and rotary inertia; the basic
assumption of elementary theory—that plane sections
remain plane—is retained. The moment M, shear V, de-
flection y, and cross-sectional rotation ¥ (see fig. 1) of a
nonuniform beam subject to a dynamic lateral loading g
are governed, according to this theory, by the following
four simultaneous partial-differential equations:

M4+ EIgy.=0 (12
V—4:Qy.—¢)=0 (1b)
M—~V+plap =0 (1c)
Vi— pAgu+q=0 (1d)

The first two equations constitute elastic laws relating the
deformations to the internal loading. Equation (1a) ex-
presses the same relationship between moment and cross-
sectional rotation as that given by elementary beam theory
Equation (1b) stipulates a linear relationship between the
shear V and the shear angle y,—y at the neutral axis; 4, is
the so-called “‘effective’’ shear-carrying area, different from
the total area A, since the true shear angle actually varies
over the cross section. Equations (1¢) and (1d) prescribe
rotational and translational equilibrium, respectively, with
the term pl;,, representing the contribution of rotary inertia.

The moment and shear may be eliminated from equations
(1) to yield two simultaneous partial-differential equations
in y and y:

(EIBEI’:):‘I'ABG @/z_ ‘ll’)_' PIﬂI/u= 0} (2)

[4sG @—¥)].—pA iz)tt+ q=0

This form is convenient for finding the normal modes and
frequencies of free vibration (¢g=0) predicted by Timo-
shenko’s theory and for carrying out modal analyses that
make use of these modes. In this theory, a natural mode
ig deseribed by a pair of functions [y(x), ¥(#)] rather than a
single function ¥(x), as is the case in elementary beam theory.

For a traveling-wave analysis, however, it is advantageous
to return to the original system of equations (egs. (1) ) but
to put them in a more convenient form by differentiating

»
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Fiaure 1.—Positive distortions and positive internal forces and moments associated with & typical beam element.
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equations (1a) and (1b) with respect to time. The equa-
tions become: .
1
wz-I—EI—B M, =0 (3&)
1
Dz—m V,—w—O (3b)
M.+ pl;0,—V=0 {3¢)
Vi—pAdw.+q=0 (8d)

where the new variables, linear velocity » and angular
velocity , have been introduced for ¥, and v, respectively.

Equations (3) comprise four first-order linear partial-
differential equations in the four variables », w, M, and V.
Turthermore, equations (3a) and (3¢) contain derivatives
of only M and w, whereas equations (3b) and (3d) contain
derivatives of only » and V. These facts are exploited in
the next section in seeking characteristic lines and char-
acteristic forms of these equations.

Characteristics and the characteristic form of the equa-
tions.—In equations (3a) and (3¢), the variables M and o
are differentiated with respect to both space and time; it
would be advantageous to replace them by equivalent equa-
tions each involving only total derivatives (or differentials)
in a particular direction in the space-time plane. The lines
in the space-time plane having these particular directions—
the characteristic lines or so-called ‘‘characteristics”—and
the equivalent equations written in these directions are found
a8 follows (vef. 12).°

A linear combination of equations (3a) and (3¢),

p(M A Elpws) + M4 plw,— V=0 4)

is formed, where the function p is to be determined in such a
way that the partial derivatives in equation (4) combine to

give total derivatives (ZM and do in the direction of an as yet

do
unknown characteristic line [z(e¢),i(¢)]. In order that the

terms Involving derivatives of A/ combine in the form

dt_dM
de'+M‘dO' d

the function p must satisfy the following equation:

ki
&4 &h&l &
&

where g—i is the required slope of the characteristic line.

Similarly, in order that the terms involving derivatives of o
combine in the form

+ di_do
“lT "l do
the function p must also satisfy the equation
' a@
pl; _d_o’_ﬂ
wEI; dz dz
do
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Since the characteristic slope must be the same in both cases,
p is defined by
o PLy 3¢
KTET,
Thus, the two values of x and the corresponding characteristic
slopes & are:

dz
1
_—
& 1 (5)
dz o
1
=g
& 1 ©)
dz o
Ely e a . .
where ¢;= P Then, multiplying equation (4) by dt

and using equations (5) yields

cldM+pI, do—V dt=0
1

when
dt=2 dz
(5]
Similarly, using equation (6) gives

—é M-I, do—V dt=0
when
1
dt=—2L dz
C1

In an analogous fashion, it can be shown, from equations
(3b) and (3d), that

1 4.4 _
o V—d dv+<q—|— = co) dt=0

when
di=1 &
C2
and
—é AV —pA, dv+<q—A;G w) &i=0
when
di=—21 gz
Ce
where ;= ‘jjlf

Then, the system of equations (3) has associated with it
four real characteristic directions and is thus “‘totally
hyperbolic” (ref. 12). A network of characteristics can
readily be constructed without prior knowledge of the
unknowns M, V, o, and v since their slopes depend only on
the material and geometrical properties of the beam. For
uniform beams, as well as for tapered beams having uniform
material properties and geometrically similar cross sections,
¢; and ¢; are constant, and the characteristics will therefore
be straight; in general, however, the characteristics may be
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T1aure 2—The characteristics of Timoshenko’s equations for a point
in the z, ¢ plane.

curved. Figure 2 illustrates the four characteristics passing
through a point P in the space-time plane with the chara.cter—
istics designated as

11+ g—i=c—1’
I—: %=——61;

It is known that, by virtue of the totally hyperbolic character
of the basic equations, the values of the unknowns A, V,
w, and v at the point P depend only on their initial values at
t=0 between the points z; and 2 on the beam (ref. 12).
Furthermore, these values at P can, in turn, have influence
only on points lying in the region above P enveloped by the
I+ and I— characteristics through P. Thus no signal
can proceed along the beam with a velocity greater than
¢; (which is generally larger than ¢, as illustrated in fig. 2).

For the sake of easy reference, the four characteristic
differential forms of the basic equations are grouped below.

Along I+ c—llm+p1, do—V di=0 (78)
Along I—: c—lla'.M— oy dotV dt=0 (7b)
Along IT4: édV —pA, dv+(pA¢caw-qu)tit=0 (7¢)
Along TI—: édV+pA, o+ (p A ea0— @)dt=0 (7d)

Related forms of these characteristic equations have been
written by Robinson (ref. 8) and Pfeiffer (ref. 9).
Propagation of discontinuities.—Characteristics are lines
across which discontinuities may exist (ref. 12); indeed, this
property is often taken as the basic definition of a character-
istic. In the present problem, discontinuities (or jumps) in
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M and « can therefore exist across the I+ and [— char-
acteristics, and discontinuities in V" and v can exist across
the I+ and II— characteristics. Hence, & jump in M
or w will propagate with the velocity ¢;, whereas & jump in V'
or » must proceed with the velocity ¢;. It should be remarke
that such discontinuities would appear only in the limiting
case of & beam subjected to an instantaneous loading. The
golution of such idealized problems, which are often instruc-
tive, requires & knowledge of the laws governing the variu-
tions in strength of these discontinuities as they propagate
through the beam. These laws are determined below for
nonuniform beams for which it is assumed that the condition
¢1==c, does not hold over any portion of the beam; in other
words, the I and II characteristics are distinct. The
special - case where ¢;=¢; is considered subsequently when
uniform beams are discussed.

Let a and b be two points on 8 I— characteristic on either
side of a particular I+ characteristic

If M is discontinuous across the I+ characteristic, then
M,—M, retains a finite value M as o and b are allowed to
approach the I+ characteristic from either side. Con-
sequently, from equation (7b) written along the I—
characteristic,

l BM— pI 1 6w=0
C1
since dt approaches zero as & and b approach each other.

Thus, everywhere along a I+ characteristic, jumps éM and
8w across this characteristic are related by

- 5M= clpLBw (8)

Similarly, the jumps across the other characteristics can be
readily shown to satisfy

Along I—: SM=—c1plibw (9)
Along IT4-: SV=—copA ;0 (10)
Along TT—: SV=copA v (11)

A jump in M is thus alwa.ys accompanied by a definite jump
in w; similarly, j jumps in V and v are always coupled together.

The variations in the magnitude of o discontinuity as one
proceeds along a characteristic may be determined in the
following manner. Equation (7a) is written for the upper
side and the lower side of the I+ characteristic; then, since
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V is continuous across a I+ characteristic, the difference of
the two equations yields

A(M)+e1pl;d(8w) =0
along I+4. Eliminating éw by using equation (8) gives

d6M)+cipLud a—ﬂ’i —0

By carrying out the indicated differentiation in the second
term and dividing by 250/, the following result is obtained:

dGM) 1 dleiol)
oM 2 o pI 1

Solution of this equation gives
[@e1pl,
60=(M): ] 22 (12

as the relationship between the magnitude of the jumps in
M at two points 1 and 2 on the I+ characteristic.

It can be shown that the identical relationship holds be-
tween jumps in M at two points on a I— characteristic.
Similarly, it can be found that, on II+ and II— character-

istics,
V=V 2252 (13)

for any two points 1 and 2 on a given characteristic. The
corresponding variations of the jumps éw and &» are, of
course, readily determined from equations (8) to (11).

UNIFORM BEAMS

Nondimensional form of the equations.—The examples to
be presented in this report are all concerned with beams
having uniform cross-sectional size and shape and uniform
material properties throughout their length. For such
beams, it is convenient to express Timoshenko’s equations in
nondimensional form. Thus, equations (3) may be written

— ML = VL* _
in terms of M: I, V: I, o=

ol
L and 5=2 as
Cy Ca3

&¢+M,=0 (142)

S
Z B Ve—ia=0 (14b)
Mi+a,—~V=0 (14c)
Vi—R 2 5,4+3=0 (14d)

z et — e\ L
where E——L—: = g——EIB dR—< )( ) The quan-
tity L refers to the beam length for all beams except
those of infinite length, in which case any convenient arbi-
trary length may be chosen for L.

The characteristics of Timoshenko’s equations for & uni-
form beam are defined in the ¢r plane by the families of
straight lines .

dr

I4: =1

& {158)
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I—: j;——l (15b)
Io+: ‘ g%% (15c¢)
I—: %——% (15d)

The nondimensionalized characteristic forms of the basic
equations become

Along I+: dM+-da—V dr=0 (162)

Along I—: dM—do+V dr=0 (16b)

Along IT+:  dVP—R d5+(Ra+§3 q) dr=0 (160)
1

Along TI—:  dVA4R d5+<Rz,—oﬁ @) dr=0 - (16d)
1

In addition to the restriction to uniform beams, for which
¢; and ¢; are constants, the examples presented herein are
further limited to those beams for which the propagation
velocities ¢; and ¢; are equal. This assumption has been
made because the simplifications that result not only permit
the ready attainment of numerical solutions but also, in par-
ticular cases, permit the attainment of exact closed solutions
for comparison. Since, for this very special case, the char-
acteristics II coincide with the characteristics I, equations
(16) may now be written, for g=0, as

dﬂ_l+d6—V dr=0

Along I+4-: _ (17a)
AV —4AN do+4\% d+=0
dM—dz+V dr=0

Along I—: (17b)
dV+432 d5+4N% dr=0

_ L
where )\—-2—7.:-

Propagation of discontinuities when ¢;=c2.—Equations (8)
to (13), which describe the behavior of discontinuities in a
nonuniform beam, also describe, as a special case, the be-
havior of disconfinuities in & uniform beam for which ¢, #¢a.
They show that such discontinuities propagate with constant
magnitude.

However, when the beam has properties such that ¢;=cs,
these equations are no longer valid. Equations which are
valid in this case may be derived in precisely the same way
by using equations (17) instead of equations (7). Discon-
tinuities in such beams can be shown to be related by

sM=ba
{ _ } (18a)
V=—a2%7 .

{aZTI =— aa%
8V =4N257 )

Along I+

Along I—: (18b)
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as they propagate, and they can be shown to vary in mag-
nitude according to the equations

d 1 =
ar (5(3)—'5 V=0 l

Along I+ and I—: 19)

4 n 28— __
ar @V)+-2X M—OS
Equations (19) may be solved simultaneously to obtain

du=A cos(A\r—DB) i
} (20)

8V =—20A sin \r—B)

where A and B are arbitrary constants which must be eval-
uated by using known values of 6z and 57 at some point on
the charavteristic. The variations in 837 and 67 can then
be readily found by using equations (18).

Thus, for the case ¢;=¢,, discontinuities in a uniform beam
do not propagate unchanged but vary in magnitude sinu-
soidally as they progress through the beam.

Along I+ and I-—:{

LIMITATIONS OF THE THEORY

It may be well to insert & word of caution about the
applicability of Timoshenko’s theory. The investigations of
Prescott (ref. 13) and Cooper (ref. 14) have shown that,
when the response of & beam includes components whose
wave length is small compared to the depth of the beam,
the assumption of Timoshenko’s theory that plane sections
remain plane after‘bending is, as might be expected, too
restrictive. Since applied disturbances which could give
rise to discontinuities would obviously excite even the short-
est wave length in the spectrum of the response, the results
obtained by application of Timoshenko’s theory to such
hypothetical problems cannot, in themselves, have practical
significance. However, carrying out solutions involving dis-
continuities is o useful means of testing methods of solution
of the Timoshenko equations with a view to applying these
methods to problems in which discontinuities do not exist.
Furthermore, the admittedly inaccurate response to an in-
finitely abrupt disturbance may be used to obtain the correct
response to disturbances of a more practical nature through
the application of Duhamel’s superposition integral.

SPECIFIC EXAMPLES—FINITE UNIFORM BEAMS WITH ci=c2

Three specific examples are considered; they are: a canti-
lever beam given a step velocity at the root, a simply sup-
ported beam subjected to a step moment at one end, and
o simply supported beam subjected to & ramp-platform
moment at one end.

METHODS OF SOLUTION

In the examples, the results of calculation by the following
three methods are compared: (a) numericel step-by-step
integration along the characteristics, (b) normal-mode super-
position, and (c¢) exact closed-form solution. The first two
procedures are approximate in character, but they could
conceivably be generalized sufficiently to be applied to
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practical structures; the last procedure, although exact,
would rarely be useful in practice and is introduced herein
chiefly as a check on the accuracy of the first two.

The detailed descriptions and applications of the threo
methods are contained in appendixes A, B, and C. In
brief, the numerical procedure exploits a grid of character-
istic lines as shown in figure 3 (2). For the case ¢;=¢; that
is under consideration, this grid consists of two families of
lines in the #7 plane with slopes 1 and —1. A recurrence
formula is developed in appendix A that gives the values of
@ and V at station 1 of a typical interior mesh (see fig. 3 (b))
in terms of the values of & and V at stations 2, 3, and 4.
Repeated application of this formuls, together with the
use of special formulas for the half-meshes at either end of
the beam and the knowledge of the magnitudes of jumps
in @ and V across characteristics where they occur, permits
@ and V to be calculated throughout the {,r plane. Subse-
quent determination of M and % is achieved by means of
simple addition formulas utilizing these calculated values
of & and V.

Although the solutions derived in appendix B have actually
been obtained by Leplace transform techniques, they have

a4
)
*\
g
«
3 3
%
q/x
<5 I
I+ - I
! Ar
T2 2 . 2 3 __l_
A@
&
‘-(‘
a
| (b)
1
4:"
o} ¢ |

(o)

(a) Space-time plane.. (b) Typical interior mesh,
Fi1cure 3.—Characteristic grid for application of numerieal procedure
to uniform beams with disturbance applied at £=0. c¢;=¢,.



ON TRAVELING WAVES IN BEAMS

been termed ‘“modal solutions” because they are exactly
those which would result from an application of the usual
mode-superposition process. The exact closed solutions in
appendix C have also been obtained through the use of
Laplace transforms.

CANTILEVER BEAM GIVEN A STEP VELOCITY AT THE ROOT

The first example to be considered, the response of a
uniform cantilever beam given a step velocity =1 at
the root, is the .equivalent of the most severe idealized
landing problem, the instantaneous arrest of the root of a
moving cantilever beam. Computed results for the shear
and moment at the root of such a beam having a ratio of
length to radius of gyration of 10 (A=5) and properties
such that ¢;=c, are presented in figures 4 (a) and 4 (b),
respectively. Two separate curves obtained by the numeri-
cal procedure are shown—one from a grid that divides the
beam into 10 segments and the other from a 20-segment
solution. The modal solution includes the contributions of
the first eight modes. Results given by an exact closed
solution are shown for both the shear and moment at the
root up to the time 7=2. These exact results are actually
those for an infinitely long beam, since the influence of the
free end is not felt at the root until 7=2. After r=2, the
influence of the free end is felt and, in this case, an exact
solution is not feasible. To illustrate the time range covered
in the plots, the point corresponding to half the period of the
first mode of vibration of the beam is indicated on the time
scale of each plot.

In figure 4 (a), the shear discontinuities evident in the
numerical solutions occur each time the discontinuous wave
front returns to the root after being reflected at the free end.
The beam is seen to react violently to each of these boosts by
the wave front, with more and more oscillations occurring
after cach succeeding jump. The frequency of these oscilla~
tions tends to increase with each succeeding boost until
limited by the finite time interval. In these regions of violent
oscillation the accuracy of the numerical solutions is ob-
viously questionable;indeed the question arises as to whether
these oscillations are really predicted by the theory or are
merely the result of some instability in the numerical process.
This question is resolved in the next section in which the
simply supported beam is considered. At any rate, away
from the regions of violent oscillations, the comparisons with
the modal solution are favorable, and, for <2, the fine-grid
numerical solution almost coincides with the exact closed
solution valid in this region.

The comparisons between the numerical and modal solu-
tions are very good in figure 4 (b) where the time history of
the moment at the root is plotted. Again, the fine-grid nu-
merical solution nearly coincides with the exact closed solu-
tion for r<{2.

SIMPLY SUPPORTED BEAM WITH AN APPLIED END MOMENT

Step moment,—A simply supported uniform beam with a
ratio of length to radius of gyration of 10 (A\=5) and prop-
erties such that ¢;=¢; is subjected to a step moment M=1
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at the end £=0. Computed results for the shear at £=0 are
presented in figure 5 (a) and the time history of moment at
the center of the beam is presented in figure 5 (b). The
point corresponding to the full period of the first mode is
marked on the time scale of each plot. The numerical curves
for both shear and moment were obtained by a 20-segment
solution. The modal curves were obtained by adding dy-
namic corrections to the static solutions, the dynamic correc-
tions being calculated with six modes for both the shear and
the moment.

This example affords an answer to the question raised in
the preceding section with regard to the stability of the nu-
merical procedure following the passage of a discontinuous
wave front. The fact is that the violent oscillations that
occur after the discontinuity actually appear in the exact
solution (fig. 5 (2)) and are hence inherently present in the
theory.

In figure 5 (2) the scale of dimensionless vertical shear
bappens to be precisely the dynamic overshoot factor; it is
of interest to note that values at least 15 times the static
shear are predicted when the moment is applied suddenly.

For shear (fig. 5 (a)), the inaccuracies in the numerical
solution just after the discontinuities are evident; however,
the numerical results approximate the exact solution very
well elsewhere. A similar observation may be made for the
modal solution, which, as would be expected, ignores the dis-
continuities and violent oscillations caused by the wave front.
The numerical and modal curves for the moment in figure
5 (b) follow the same pattern, agreeing well everywhere ex-
cept in the regions immediately following the discontinuities.

Ramp-platform moment.—Computed results for the shear

" at the end £=0 and the moment at the center of the same

simply supported uniform beam subjected to the applied
ramp-platform moment

MO,)=r
ﬂ(O,T) =1

(0=r=1)

(r>1)

are presented in figures 6 (2) and 6 (b). Again, the period
of the first mode of vibration is marked on the time scales.

The numerical curves were recomputed with a 20-segment
grid for the new forcing function; however, the results for the
modal and exact solutions were obtained by means of a
superposition of the preceding results. This superposition
was carried out analyticelly for the complete modal solution
and for the exact solution in the range 7<{2. In the range
7>2, it was necessary to carry out the superposition for the
exact solution numerically.

In figure 6 the time to peak value of the applied moment
is seen to be approximately one-seventh the period of the
first mode; predicted shear values approximately three and
one-half times the static respouse occur.

With the removal of the discontinuity, there remain no
high-frequency oscillations which the numerical solution
might be unable to represent. In fact, all three solutions
for the shear and both moment solutions are seen to be in
excellent agreement.
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(a) Time history of the nondimensional vertical shear at the root.
(b) Time history of the nondimensional moment at the root.

F16urg 4.—Response of a uniform cantilever beam subjected to a step velocity at the root.
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F1aure 5.—Response of a uniform simply supported beam subjected to a step moment at ¢=0.
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Fiaurs 6.—Response of a uniform simply supported beam subjected to a ramp-platform moment at £=0.

CONCLUDING REMAREKS

Timoshenko’s equations for the motion of vibrating non-
uniform beams may be written in a characteristic form which
appears to be well-suited to solution by numerical methods.
In the examples presented in this report, all of which are for
uniform beams with equal propagation velocities of bending
and shear discontinuities (¢;=c¢;), the solutions by the numer-
ical and modal methods generally agres well with each other
as well as with exact closed solutions where these have been
obtained. However, the modal method, of course, fails
entirely to reproduce discontinuities in shear or moment,
and the numerical procedure, although it yields these
discontinuities, represents the initial oscillations which
follow with decreasing accuracy as more and more reflections
of the wave front occur. In the more practical situations

where discontinuities do not exist, these difficulties will, of
course, not arise.

The results of the examples carried out by the numerical
traveling-wave procedure encourage the viewpoint that
such traveling-wave analyses may eventually be of practical
usefulness. This kind of procedure is inherently simple and
straightforward and has the advantage that the bulk of the
labor involved is routine computation rather than mathe-
matical analysis. It should be emphasized, however, that
numerical solutions of Timoshenko’s equations have been
demonstrated only for uniform beams in which the propaga-
tion velocities ¢; and ¢, are equal; numerical procedures for
the general case where they are unequal remain to be devel-
oped and tested.

LaNGLEY AERONAUTICAL LABORATORY,
NaTtioNaL Apvisory COMMITTEE FOR ABRONAUTICS,
LancrLeYy Fiewp, Va., Oclober 28, 19562.



APPENDIX A

NUMERICAL SOLUTIONS FOR UNIFORM BEAMS WITH ci=c2

MATRIX FORMULATION

Let the differential equations (17) be replaced by the
finite-difference equations )

AFE 25— TAr=0 (Ala)
Along I4: .

AV—4NAT +4NBAT=0 (Alb)

AM— Aa+4-VAr=0 (Alc)
Along I—: e

AV+H4NAT+H4NGAT=0 (Ald)

and consider a closely spaced network of I+ and I— char-
acteristics in the space-time plane as shown in figure 3 (a).
Let the corners of a typical interior mesh of this grid be
designated as shown in figure 3 (b). A step-by-step integra-
tion formula for @ and V may now be derived in the following
manner.

Equations (Al) may be written along the upper mdes of
the typical mesh to obtain

HI"‘ M2+51 ws"“—(Vrf‘ Vz) 0 (A2)
M~ Mtk 5 (Tit P =0 (43)
Vi— Vi 4M(5,— 72) +2NA7 (3, +32) =0 (Ad)
Ty 4N (T — Ta) + 2N AT (B, +35) =0 (A5)

where & and 7 have been assumed to vary linearly in the
small intervals between the corners. Obviously equations
(A2) to (A5) may be solved mmulta.neously to obtain the
four quantities V, &, 7, and M at point 1 in terms of their
values at points 2 and 3. However, it is noted that, if V,
@, 7, and M at points 2 and 3 were determined by a similar
process for the preceding meshes, they already satisfy the
equations

My Mt -5 Vet Vo =0 (46)
Ha_ﬂrl"—da_ 54—'421(?34' 74) =0 ) (A7)
— Vi 403 (5— 5) +2MAr (32 +3) =0 (A8)
— V— 4N (5,— ) +2NAT (@5 +2) =0 (A9)

Equations (A6) and (A7) may be added to equations (A2)
and (A3), respectively, to obtain ‘
E—E+51—252+54'—é21(ﬁ—ﬁ)=0

and

M — &y +-20,— w4+ ( V4) 0

which msay, in turn, be subtracted to obtain the single
equation

&= s t8i— S (V= V=0 (A10)

Similarly, equations (A8) and (A9) may be subtracted from
equations (A4) and (A5), respectively, to obtain

— 2V, Vi— 4N (51— 5) + 2\ A7 (5,—
and -

— 2V Vi 4N (51— 7.) +- 20 A7 (@— 55 =0
and these may be added to derive

w)=0

Vl_ Vg'—' Va‘l‘ 74+2)’AT((;1_ 6—04)=0 (Al])

Equations (A10) and (All) may now be solved simultane-
ously to obtain the step-by-step integration formula

w1 1 B @yt s wy
AR SEE [ Y
where
[ AT
Mal=| ! ?:l
| —2N\Ar 1
and
_an?—1  —Ar
=] " psa, (MT)*—_J

Thus @ and V may be determined at every interior mesh
point in the space-time plane by the repeated application
of formula (A12) to each mesh as it is encountered. The
half-meshes which occur at the vertical left and right bound-
aries of the plane (fig. 3 (2)) require special formulas incor-
porating the known boundary data. These formulas may
be derived from equations (A1) by a procedure similar to that
used in obtaining equation (A12). Boundary formulas for
some specific examples are presented in subsequent sections
of this appendix.

Besides boundary data, initial date must be provided in
order that a step-by-step solution may be begun. In all the
examples considered, the beam is initially at rest and has a
disturbance applied at the point £=0 beginning at time
r=0. The region 7<(# (without grid lines in fig. 3 .(a))
therefore is one of zero stress and motion and & and V are
given along the line 7=¢ by the known conditions at the
wave front. It is with these values that each numerical
solution is begun.

Discontinuities in @ and V offer no special difficulties since
they propagate so as to be always located on characteristics
which, of course, can be made part of the basic grid. Thus
they are simply added as they are encountered.
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Once @ and ¥ have been determined at the grid intersec-

. tions by the step-by-step process, M and 7 may be found by
repeated application of equation (A2) or (A3) and equation
(A4) or (A5) along the proper grid lines from boundaries
where M and 7 are known. For example, if M is known
along the left boundary, it may be found at a point g by

applying equation (A2) successively to the intervals ab. be,
ed, . . . fg. The Tesulting expression for M, becomes

Hg= a+aa_ag+AT<%va+Vb+- . -+T7F!'—;'T73> (A'13)

This procedure is seen to correspond to integration of
the first of differential equations (17a) by means of the
trapezoidal rule.
SPECIFIC PROBLEMS

Cantilever beam given a step velocity at the root.—If the
root {=0 of a uniform cantilever beam is given & step
velocity =1 at time =0, the boundary conditions may be
written

j5(0,r)=1
w(0,7)=0
_( ) (A14)
M(1,7)=0

V(@a,n=0

REPORT 1173—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Typical left-boundary and right-boundary half-meshes are

T

AT Ar Vz

7(0, 7)= |
w(0,7)=0

Application of equations: (Alb) and (Ald) to the sides of
the left-boundary half-mesh and proper combination of the
resulting equations to eliminate 7 produces

71 =2V3—V4 (A]. 5)

Similarly, application of equations (Ala) and (Alc) to o
right-boundary half-mesh produces

Z-Jl= 252'— ‘0-54 (A].G)

so that a complete set of integration formulas for determin-
ing @ and V for this problem is now available. In addition,
if the unused equations (eqs. (Ala) and (Alec) for the left-
boundary half-mesh and egs. (A1b) and (A1d) for the right)
are applied and combined to eliminate M and 7 at points 3
and 2, the recurrence relations

M=M,—%—5 7=V (417)
. for left-boundary half-meshes and

- = 1 = A -

01=D4—§)Tz Vg+51: @1—-0)4) (A].S)

for right-boundary half-meshes are obtained. These equa-
tions may be used to compute A1 at the root and 7 at the
tip after @ and V have been determined everywhere.

Since the applied disturbance is initially discontinuous, @
and V will be discontinuous along the line r=%¢ (see fig.
3 (a)). Inorder to begin the step-by-step solution for » and
V, these discontinuities must be determined in advance.
Furthermore, since the wave front is reflected back into the
beam at either end, @ and V will also be discontinuous along
the lines 7=2—§, =24 . . ., and 6 and 8V must be
determined along each of these lines before the step-by-step
solution can be extended beyond it. The discontinuities at
the wave front are determined as follows.

From the boundary conditions (A14), it is seen that
52(0,0)=0 and 89(0,0)=1. Thus, from equation (18a),
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377(0,0)=—4M, and equations (20) become, for the line r=E,
8% (,5)=—2\sin xg}

(A19)
§V(£,5)=—4Ncos N

At =1, the discontinuities ncross r=%¢ are 53 (1,1) =8M(1,1) =
—2X sin X and §V(1,1) =—4\2%o0s A, so that, if the boundary
conditions A4(1,7) =V (1,r) =0 are to be satisfied, jumps must
oceur across r=2—¢ at the point (1,1) with the magnitudes
85(1,1)=—380M(1,1)=—2\ sin X and 6V (1,1)=4Ncos A. In
view of these initial conditions at r=1, equations (20)
become, for the line r=2—¢,

0w (£,2— £)=—2) sin M
} (A20)
8V (£,2—£) =4Mcos \E A

Initial jump values §5(0,2)=0 and 5V(0,2)=4* for the line
r=2-¢ may be found from equation (A20) by satisfying the
boundary conditions »(0,7)=0 and ¥(0,r)=1. From these
initial values, the discontinuities across r=2-¢ are found to
be the negative of those across r=¢, or

36 (£,2+£)=2x sin M
} (A21)
SV (£,2-+£)=4MNcos At
Then, it must be true that .
35 (£ A—E) =2\ sin At
— } (A22)
SV(E4— ) =—4Ncos M -

and so forth, with the values on each succeeding line r=n4¢
repeating the values on the line 7=(n—4) 4% The varia-
tions in the magnitudes of 6 and &V as the wave front
propagates back and forth through the beam are thus clearly
defined, and, since 7< £ i8 & region of zero stress and motion,
equations (A19) define the values of @ and V along the line
7=£.

With % and ¥V known along r=¢, the solution for @ and V
may be begun by applying formula (A15) to the half-mesh
in the lower corner of tr